К ОЦЕНКЕ СПОСОБА ЭЛЕКТРОЛИЗА С ПОВЫШЕННЫМ КОЭФФИЦИЕНТОМ ИСПОЛЬЗОВАНИЯ СОЛИ

Фесенко Л.Н. ${ }^{1}$
д-р техн. наук. проф.
\section*{Игнатенно С.И. ${ }^{2}$} канд. техн. наук, зам. директора по научной работе

Рассмотрен запатентованный способ электролиза пищевой поваренной соли для производства низноконцентрированного гипохлорита натрия с заввленным автором повышенным выходом активного хлора по тону ивысокмм процентом разложения соли в сравнении с классическмм способом электролиза з\%-ного раствора поваренвай сом моорой воды в начентве характеристики процесса, предлоненн перспентивны
Ключевые слова: низкоконцентрированный гипохлорит натрия, электролиз, 10%-ый и 3%-ный растворы поваренной пищевой соли, морская вода.

Низкоконцентрированный гипохлорит натрия (ГХН), применяемый для обеззараживания питьевых и сточных вод, может быть получен электролизом искусственно приготовленных растворов поваренной соли или природных минеральных хлоридных вод в бездиафрагменных электролизерах [1, 2]. В случае применения искусственного электролита основные затраты на получение ГХН складываются из стоимостей электроэнергии, поваренной соли и воды [4, 5].

Опыт эксплуатации электролизных установон «Хлорэфс», производимых в ООО НПП «ЭКОФЕС. на объектах ЖKXX показывает, что затраты на соль составляют $30-40 \%$ себестоимости произведенного килограмма активного хлора в растворе ГХН. Для снижения расхода соли электролиз следует проводить с максимально высокой степенью её использования (конверсии), чем как это принято в действующих технологиях (не более 40-45\%). Кроме того, это позволит уменьшить количество соли вносимой в воду вместе с ГХН в технологиях обеззараживания воды [4].

Известен ряд приемов, направленных для решения этой задачи [6-10], в числе которых: многократная циркуляция солевого раствора; донасыщение электролита свежими порциями

солевого раствора, либо многократное исполь зование электролита в результате проведения электролиза в несколько стадий. Определенный интерес представляет способ, предложенный НПК єЭкологs в патенте N297116364/25 [10] и заявленные в нем возможности.

Согласно формуле изобретения указанного патента є..способ проведения электролиза водного раствора соли, включающий стадию электролиза исходного солевого раствора и последующий электролиз полученного на предыдущей стадии раствора, содержащего продукты электролиза, отличающийся тем, что осуществляют последую щий элентролиз полученного на предыдущей стадии раствора при разбавлении его водой при объемном соотношении раствора и воды 1:(0,15-2)....

Автор патента [10] утверждает, что в случае проведения элентролиза по предлагаемому им способу удается достигнуть конверсии исходной соли до 60%, а количество образующегося при этом NaClO в 6 раз выше, чем в технологиях без разбавления водой при затратах электроэнергии 6,0-6,5 кВтчч на кг активного хлора. Согласно описанию, предлагаемый спосо6 может быть реализован в бездиафрагменных электролизерах нак цикличесного, так и непрерывного действия

Рисунок 1
(хема энспериментальнойустановни

- зпектралмзная ячейкдқ 2 - злентродьк 3 - локн питания 4 - пробоотборник 5 - цррюуляционный насос; 6 - датчик температуры: 7 - променутоная емностъ

Экспериментальную проверну предложенного в патенте способа проводили в соответствии с приведенными в изобретении рримерами. Для чего в качестве электролита использовали 10%-ный раствор NaCl первого сорта (10 г NaCl на 100 мл воды) производста ГПО кАртемсоль», приготовленный на водопроводной воде. К раствору ГXH, полученному на первой стадии электролиза исходного 10\%-ного раствора, добавляли водопроводную воду температурой $20^{\circ} \mathrm{C} \pm 1^{\circ}$ в объемном соотношении раствора и воды 1:1. Разбавленный таким образом раствор направляли на вторую стадию электролиза. Аналогичным способом проводили третью и четвертую стадии элентролиза. Объем исходного 10%-ного раствора составлял 100 мл, конечного - 1600 мл. Раствор получаемого ГХН разбавляли каждый раз по достижении в нем концентрации активного хлора -8 г/л.

Параллельно проводили эксперименты, в которых элентролитом служил 3%-ный раствор $\mathrm{NaCl}(10$ г NaCl на 330 мл воды). Электролиз проходил в циркуляционном режиме без разбавления, объем электролита составлял 330 мл. Эксперимент завершали по прекращению роста концентрации активного хлора в растворе.

Исследования проводили при постоянном токе плотностью $1000 \mathrm{~A} / \mathrm{m}^{2}$ в бездиафрагменных электролизерах циркуляционного типа (рис. 1) с начальной температурой раствора $20^{\circ} \mathrm{C} \pm 1^{\circ}$. При электролизе измеряли напряжение на электролитической ячейке и концентрацию активного хлора в ГХН по методике [16]. В качестве электродов использовали окисно рутениевотитановые аноды ОРTA. Источником постоянного тока служил инверторный блок питания марки GW INSTEK 3610. В обоих способах электролиза использовали поваренную соль, навесной по 10 г.

Результаты эксперимента для двух сравниваемых способов приведены на рисунке 2 а, 6 в виде кривых изменения концентрации активного хлора во времени элентролиза, из которых следует, что характер кривых различен. В способе с разбавлением при каждом добавлении в ГХН воды на 30-, 60-, 120- и 270-ой минутах электролиза (рис. 2 а) происходило сначкообразное изменение концентрации активного хлора После первого разбавления (на 30-ой минуте электролиза) наблюдали ожидаемое снижеэлектролиза) наблюдали ожидаемое сниже-
ние концентрации активного хлора с 8 до 4 г/л. ние концентрации активного хлора с 8 до 4 г/л.
При последующем разбавлении на 60 -ой минуте При последующем разбавлении на 60 -ой минуте
прирост нонцентрации хлора уже становился прирост концентрации хлора уже становился
меньше, кривая выполаживалась, а время работы электролизера увеличивалось. После 120 минут электролиза еще удалось достичь концентрации ГХН 6 г/л. При дальнейшем разбавлении (на 270

Рисунок 2
Зависимость нонцентрации активного хлора от продолжительности элентролиза растворов поеаренной соли с разбавленмем водой (A) и без разбавления (Б).

минуте электролиза) прироста концентрации до желаемых 8 г/л не наблюдалось (максимальное значение 6 г/л), а последующее разбавление (с 6 до 3 г/л) и электролиз разбавленного ГХН уже не обеспечивал прироста активного хлора (рис. 2 а 270 минут и далее).

В эксперименте без разбавления электролита (рис. 2 б) кривая имеет традиционный вид [5] с плавным увеличением концентрации активного хлора при неизменном объеме раствора гипох лорита (330 мл). Скорость прироста активного хлора меньше, чем в методе с разбавлением, но и начальная концентрация хлоридов в исходном растворе в 3,3 раза меньше (18,19 против 60,65 г/л Cl). Максимально достигнутая концентрация - 14,9 г/л по активному хлору была получена спустя 360 минут электролиза

Рисунок 3
Рисунок 3
Изменение массы активного хлора при элентролизе растворов поваренной соли с разбавлением водой (A) и без разбавления (Б).

Рисунок 4
Изменение нипррюкения во времени элентролиза растворов поваренной соли с разбавлением водой (A) и $6 е з ~ р а з б а в л е н и я ~(Б) ~$,

На основании полученных зависимостей (рис. 2 а, б) были рассчитаны массы образующегося хлора за все время электролиза (рис. 3). Как видно из рисунка массы получаемого активного хлора до 150 минут электролиза для обоих способов одинаковы, при дальнейшем электролизе прирост массы в методе с разбавлением на 5-15\% больший, чем в сравниваемом варианте. При этом максимальная масса генерируемого гипохлорита в пересчете на активный хлор составила 6,06 и 4,91 г соответственно для способа с разбавлением и без разбавления.

В рассматриваемых процессах немаловажной эксплуатационной характеристикой электролиза является количество электроэнергии, расходуемой на 1 кг вырабатываемого активного хлора, в связи с чем измеряли напряжение на ячейке во времени электролиза (рис. 4).

В варианте с разбавлением солевого раствора напряжение возрастало с наждым добавлением воды (рис. 4 а). При этом вследствие разной электропроводности растворов его начальное

Рисунок 5

Колинество элентрознергм, расходуемой на полуение 1 kr активного хлора при элентолизе поваренной соли с разбавлением водой (А) и без разбавления (Б)

Рисунок 6
вход активного хлора по тону от продолжительности злентролиза растворов поваренной солм с разбавленмем водой (A) и без разбавления (б)

значение (4,12 B) было ниже напряжения в классическом (без разбавления) способе (5 В), После четвертого разбавления (объем раствора 1600 мл, 270 минут процесса) наблюдали резкий сначок напряжения до 6 В и прекращение прироста количества вырабатываемого активного хлора (рис. 2 а). Очевидно, что при разбавлении электропроводность снижается и проводить электролиз с каждым разбавлением

становится экономически все более затратным Способ без разбавления раствора характеризуется стабильным напряжением на ячейке за все время электролиза (рис. 4 6),

Результаты таких измерений (рис. 4) позволили рассчитать количество потребляемой электроэнергии на получение 1 kr активного хлора

Рисунон 7
Изменение степени использования хлоридов во времени элентролиза растворов поваренной соли с разбавлением вопой (A) $и$ без разбавления (б)

Из рисунка следует, что зависимости имеют схожий характер и кривые расположены близко аруг к другу. Однако спустя 270 минут электро лиза в опытах с разбавлением солевого раствора происходил 10%-ный рост затрат на электро нергию, что связанно со скачком напряжения (рис. 4, кривая а). За все время элентролиза 360 минут) энергозатраты на получение 1 kr ктивного хлора составляли 10,09 и 9,35 кВт•ч, соответственно в способах с разбавлением колевого раствора и без него.

Одной из показательных характеристик эффективности электролиза в исследуемых процессах является выход хлора по току (η, \%). Этот поназатель рассчитывается по формуле:

$$
\eta=\frac{Q_{T}}{Q_{A}} \cdot 100
$$

где Q_{T} - теоретическое количество элентричества, необходимое для проведения электролиза по занону Фарадея, A-ч
Q_{R} - действительные затраты элентроэнергии, Ач
Теоретическое ноличество электричества определяли из выражения [12]

$$
Q_{r}=\frac{C_{A x} \cdot V}{k_{r}}
$$

тде C_{x} - концентрация активного хлора в электролите, г/л;

V - объем элентролита, л;

$k_{\text {s }}$ - электрохимичесний эквивалент, г/(А-ч), для хлора $k_{\mathrm{y}}=1,32$ г/(А-4) [13].

Действительные затраты электроэнергии рассчитывали по формуле:

$$
Q_{\pi}=I \cdot \tau
$$

где I - сила тока, А
 τ - время электролиза, ч.

Результаты вычислений представлены на рисунке 6, из которого следует, что для обоих рассматриваемых случаев при электролизе наблюдается снижение выхода хлора по току. Следует отметить более высокий выход хлора по току в варианте без разбавления в течение первых 90 минут до концентрации 8 г/л по активному хлору, считающимся оптимальным при электроиизе 3%-ных растворов поваренной сопи [2, 4). Спустя 120 минут опыта с разбавлением выход хлора по току достигает более высоких значений чем при электролизе 3%-ного раствора.

Помимо выхода хлора по току, не менее значи мой характеристикой является величина коэффициента использования хлоридов. Оценку

Основные поназатели электролиза с разбавлением 10\%-ного и без разбавления 3%-ного растворов поваренной соли в разные промежутки времени (в числителе - 10%-ный раствор, в знаменателе -3%-ный раствор)

Таблица

Время электролиза, мин.	Показатели электролиза				
	Концентрация активного хлора, г/л	Macca наработанного хлора, г	Количество электроэнергии, W, кВтч/кг	Выход хлора по току, ๆ, \%	Коэффициент использования хлоридов, $\lambda, \%$
90	$\frac{6.20}{8.00}$	$\begin{aligned} & 2.48 \\ & 2,63 \end{aligned}$	$\frac{4.47}{4,33}$	$\begin{aligned} & 73.68 \\ & 80,00 \end{aligned}$	$\begin{aligned} & 24,80 \\ & 27,00 \end{aligned}$
120	$\begin{aligned} & 2,70 \\ & 9,40 \end{aligned}$	$\frac{3.08}{3.10}$	$\frac{4,86}{4,91}$	$\frac{68,63}{69,12}$	$\frac{30,80}{31,33}$
270	$\frac{6.30}{14,00}$	$\begin{aligned} & \frac{5.04}{4.62} \end{aligned}$	$\frac{7,18}{7,45}$	$\frac{49.91}{45,75}$	$\frac{50,40}{46,67}$
360	$\frac{3,79}{14,88}$	$\frac{6.06}{4.91}$	$\frac{10.09}{9,35}$	$\begin{aligned} & 45.04 \\ & 36.47 \end{aligned}$	$\frac{60,64}{49,60}$

тепени использования хлоридов (конверсию) в изучаемых способах (рис. 7) рассчитывали по формуле [2]:

$$
\lambda=\frac{C_{A X}}{C_{\text {Noct }}} \cdot 100 \%
$$

где $C_{A X}$ - концентрация активного хлора элентролите, $r / л$;
$C_{\text {Nocl }}$ - нонцентрация NaCl в электролите, г/л.
На рисунке 7 представлены зависимости коэффициента использования хлоридов в элентролите от времени электролиза для двух сравниваемых вариантов. Из рисунна 7 видна схожесть полученных кривых. При этом степень использования хлоридов в способе с разбавлением солевого раствора несколько выше, чем в классическом варианте без разбавления и составляет максимум 60\% и 50\% соответственно. Реально же при работе с 3%-ным солевым раствором до получения 8 г/л по активному хлору степень конверсии соли составляет $25-30 \%$ при циркуляционном режиме электролиза

Результаты экспериментов, полученные во времени электролиза 10%-ного с разбавлением и 3%-ного растворов поваренной соли, сведены в таблицу 1 .

Из таблицы 1 видно, что в обоих вариантах элентролиз в течение 90, 120 и 270 минут хараютеризуется близними величинами основных показателей, однако концентрация активного хлора в способе без разбавления выше на 2-8 г/л.

Если элентролиз вести 360 минут, то при использовании способа с разбавлением образуется 6 г активного хлора против 5 г в способе без разбавления. При этом в способе без разбавления удается получить большую концентрацию активного хлора - 14,9 г/л, однако коэффициент использования хлоридов при таком способе ниже на 10\%. Учитывая то, что в результате четвертого разбавления электролита (270 минут электролиза) происходит 10%-ное повышение затрат электроэнергии (рис. 4, кривая а) без существенного прироста массы хлора, то электролиз целесообразно вести 270 минут с трехкратным разбавлением электролита. Оптимальное время электро-

лиза без разбавления - 90-120 минут, когда основные характеристики процесса имеют максимально высокие показатели.

Из изложенного следует, что заявленная автором патента возможность 6-ти кратного увеличения ноличества активного хлора в ГХН в сравнении с электролизом растворов поваренной соли без разбавления не подтверждается экспериментально. При этом 10\%-ное увеличение коэффициента использования хлоридов возможно достичь лишь при экономи чески затратном времени протекания процесса 360 минут. Полученные результаты свидетель ствуют о несоответствии заявленных в патенте данных и отсутствии каних-либо новых не известных ранее результатов при реализации способа, изложенного в патенте [10]. Абсолютно идентичная электрохимическая природа процесса обоих способах электролиза при использовании равного исходного количества соли (10 г) дает сопоставимые результаты (в пределах погрешности энсперимента) по получаемому продукту.

Для повышения энергоэффективности способа с многократным разбавлением более целесообразным представляется вариант использования морской воды в качестве разбавителя конценгрированного солевого раствора. Разбавляя солевой раствор морской водой, будут вноситься 3 электролит дополнительные хлориды, решая при этом две задачи: электролиз поваренной

соли с повышенным коэффициентом использования хлоридов при одновременно приемлемых затратах электроэнергии

Выводы

1. Заявленный как инновационный способ с многократным разбавлением электролита не позволяет получить заявленного автором патента 6 -ти кратного увеличения количества активного хлора в сравнении с классическим элентролизом без разбавления при одинаковом количестве исходных хлоридов: масса активного хлора - 4,91 г, с разбавлением $-5,04$ г.
2. Способ электролиза с многократным разбавлением электролита позволяет увеличить конверсию хлоридов с 50% до 60% в сравнении с известным методом, при этом энергоемкость получения активного хлора возрастает на 8-10\%.
3. Получены сопоставимые затраты электроэнергии на производство $\frac{\mathrm{kr}}{}$ аютивного хлора: тащ, на электролиз с разбавлением расходуется 10 кВт•ч, без разбавления - 9,4 кВт•ч при одинаковой исходной массе расходуемой соли;
4. Перспективным решением применения способа с разбавлением может быть вариант с заменой водопроводной воды (разбавителя) природной морсной или подземной с преобладающим хлоридно-натриевым фоном.

Литература:

 ноды. Сборник докпадоо научно-практической комференчии, посоященной памяти ажапемика РАН. С.В. Яковпева. / М-во образо

 ;Оуубп: 01.01.1970. N2006113773/02; 3алла.: 25.04.2006; Оnyбпп: 10.11.2007.

Паг. 2125120 Россия, С2581/00. Спосо6 проведения электропиза водного раствора соли / Иткин Г.Е.: м997116364/25; 3а
Иткин Г.E, Гоухберг М.С., Трухиин 10 А
1998. - N10.-C. 18.56.

* Фесенко Л.Н. Игнатеико С... Обеззараживание води низкоконцентрированным гипохлоритои натрия: от дискуссии к вмедрению. // Водосиабженше и канапизацин, 2009, N9-10. - C. 97-103.

