BCT

ISSN 0321-4044

ВОДОСНАБЖЕНИЕ И САНИТАРНАЯ ТЕХНИКА

Насосы•Арматура. Сервис

ПИТЬЕВОЕ ВОДОСНАБЖЕНИЕ

Хлор- и броморганические соединения в питьевой воде: методы их удаления

В. Н. ШВЕЦОВ ${ }^{1}$, К. М. МОРОЗОВА², Л. Н. ФЕСЕНКО³, А. Ю. СКРЯБИН ${ }^{4}$, А. И. ВЕРГУНОВ ${ }^{5}$

' Швецов Валерий Николаевич, доктор технических наук, профессор, заведующий экспертно-консультационными центром, Швецов валерий Никол
ОАО ${ }^{\circ}$ НИИ ВОДГЕО.
ОАО «НИИ ВОДГЕО»
119435, Россия, Москва, Б. Саввинский пер., 9, стр. 1, тел.: (499) 245-96-33, e-mail: vst@aha.rи
${ }^{2}$ Морозова Ксения Михайловна, кандидат технических наук, ведучий научный сотрудник, ОАО «НИИ ВОДГЕО 119435, Россия, Москва, Б. Саввинский пер., 9, стр. 1, тел.: (499) 272-47-58, е-таї: vodgeo@inbox.ru
${ }^{5}$ Фесенко Лев Николаевич, доктор технических наук, профессор, заведующий кафедрой «Водное хозяйство предприятий и населенных месть, Южно-Российский государственный политехнический университет им. М. И. Платова (Новочеркасский политехнический институт)
346428, Россия, г. Новочеркасск Ростовской области, ул. Просвещения, 132, тел.: (86352) 55-3-34, e-mail: 65613@таіl.rи ${ }^{\text {'Скрябин Александр Юрьевич, кандидат технических наук, генеральный директор ОАО «ПО Водоканал г. Ростова-на-Дону" }}$ 344019, Россия, г. Ростов-на-Дону, ул. М. Горького, 295, meл.: (863) 83-14-08, e-mail: skryabin@rvdk.ru
${ }^{5}$ Вергунов Алексей Игоревич, инженер-технолог, ООО НПП эЭКОФЕС.
346400, Россия, г Новочеркасск Ростовской области, Баклановский проспект, 200, тел.: (951) 510-80-09,
e-mail: verqunoval@mail.ru

Проведены пилотные испытания биосорбционномембранной технологии, позволяющей снизить со держание тригалогенметанов в питьевой воде как путем предотвращения их образования, так и удаления их из очищенной воды. Предварительная био-сорбционно-мембранная обработка воды р. Дон позволяет снизить образование токсичных хлор- и броморганических соединений при последующем хлорировании воды в $1,4-1,5$ раза. Доочистка воды в биосорбционно-мембранном реакторе обеспечивает снижение количества хлорорганических соединений образовавшихся при первичном хлорировании. Эффективность снижения концентрации хлороформа в биосорбционно-мембранном реакторе составляла в среднем 45%, дихлорбромметана -82% и хлордибромметана -89%, в то время как на фильтрах хлороформ удалялся на 23%, дихлорбромметан и хлор дибромметан - на 33% каждый. При дополнительной обработке в биосорбционно-мембранном реакторе донской воды, прошедшей предварительную физико химическую очистку, эффективность доочистки (уда-

ления органических загрязнений) по ХПК составляла 33%, по перманганатной окисляемости -35%, цвет ности $-34,3 \%$. В то же время эффективность удале ния органических загрязнений на фильтрах по ХПК составляла 19\%, по перманганатной окисляемости 9% и цветности -10%. Наиболее высокая степень до очистки в обоих случаях была получена по мутности Эффективность снижения мутности в биосорбцион-но-мембранном реакторе составляла 91%, на фильт рах -58%. Результаты длительных исследований проведенных на пилотной установке в течение двух лет на воде р. Дон, показали, что развитие биосорб ционно-мембранных технологий является перспек тивным направлением совершенствования процессов очистки природных вод, в частности, для предотвращения образования хлор- и броморганических соединений при хлорировании воды.
Ключевые слова: очистка природной воды, тригало генметаны, биосорбционно-мембранная технология, хлор- и броморганические соединения, порошкооб разный активированный уголь.

В большинстве стран качество питьевой воды контролируется законодательно [1]. В России с 1998 г. введены в действие нормативные документы, согласно которым в питьевой воде регламентируется содержание органических и неорганических веществ, часто встречаюшихся в мриролных волоисточниках или образуюшихся в процессе водоподготовки.
В перечень СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения» включены хлор- и бромсодержащие соединения, тригалогенметаны, образующиеся при обработке питьевых вод дезинфицируюшими хлорсодержащими агентами - хлороформом, бромоформом, дибром хлорметаном, дихлорбромметаном. Причем, с 2001 по 2007 г. были ужесточены нормативы на содержание некоторых тригалогенметанов, наиболее токсичные из которых представляют опасность для здоровья человека даже в микродозах в связи с чем были отнесены к группе каншеро генов.

Так, в соответствии с ГН 2.3.5.2280-07 «Гигиенические нормативы. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования», предельно допустимая концентрация хлороформ снижена с 200 (по СанПиН) до 60 мкт/л, гигие нический норматив для дибромхлорметана и дихлорбромметана составляет 30 мкг/л. Бромо форм относится ко второму классу опасности, и его нормативное максимально допустимое содержание по СанПиН составляет $100 \mathrm{mKг} / л$. В связи с этим установленный Роспотребнадзором норматив 60 мкт/л в системе городского водопровода должен строго соблюдаться

В ряде стран установлены ПДК суммарного содержания тригалогенметанов в питьевой воде в США и Японии -100 , в Германии и Венгрии 50 , в Швеции $-25 \mathrm{mkr} /$ л

Процесс образования этих соединений и их относительное содержание зависят от множеств факторов, в частности, от природы органиче ских вешеств в сырой воде, содержания метана и брома, pH , температуры, состава и дозы хлорируюшего реагента, продолжительности хлорирования Исследования качества питьевых вол различных странах и регионах показывают, что содержание продуктов хлорирования качествен но и количественно варьируется в широких пре делах $[2 ; 3]$.

Основное количество хлор- и броморганических соединений образуется на этапе первичного хлорирования неочищенной воды. В большинстве случаев их концентрации в питьевой воде выше установленного норматива в 2-8 раз, при этом количество хлороформа обычно на 1-3 порядка превышает содержание других тригалогенметанов [4].

Многочисленными зарубежными и отечественными исследованиями установлено, что хлор- и броморганические соединения, присутствующие в исходной воде и образовавшиеся при ее хлорировании, на очистных сооружениях традиционного типа не задерживаются. Максимальная их концентрация отмечается в резервуape чистой воды.

Сушествуют два основных способа снижения концентрации тригалогенметанов в питьевой воде: предотвращение их образования при водоподготовке и удаление на заключительных эта пах обработки воды.

Основными источниками образования хлори броморганических соединений в процессе водоподготовки являются органические вешества присутствуюшие в исходной воде. Предварительная очистка воды от растворенных и коллоидных органических загрязнений до ввода в нее хлора может уменьшить образование этих веществ в питьевой воде на $10-80 \%$ в зависимости от глубины очистки [5]

Выбор того или иного технологического при ема, уменьшаюшего концентрацию тригалогенметанов в питьевой воде, зависит прежде всего от качества исходной воды и потенциальной воз можности их образования при ее обработке.

При водоподготовке для удаления остаточных органических загрязнений после коагуляции и фильтрования часто используют сорбцию на активированном угле и озонирование. Однако такая технология, позволяюшая обеспечить требуемые нормативы для питьевой воды, не всегда обеспечивает барьерную функцию в отношении некоторых хлорорганических загрязнений, а из за высоких эксплуатационных и энергетических затрат имеет ограниченное применение на стан циях водоподготовки.

Использование порошкообразного активированного угля (ПАУ) для очистки воды умень шает содержание тригалогенметанов на $10-40 \%$, Эффективность удаления органических веществ из воды зависит от их природы и в основном от дозы ПАУ, которая может изменяться в широких пределах - от 3 до 20 мг/л и более [3].

В последние годы в области обработки при родных вод благодаря высокой эффективности

удаления загрязнений и ряду других преимуществ получила распространение мембранная микрофильтрация, однако использование только мембранной технологии не позволяет удалять органические загрязнения до требований СанПиН 2.1.4.1074-01.

В разработанных конструкциях мембранных биореакторов используются ультра- и микрофильтрационные мембраны (размер пор $0,04-0,1$ мкм) с высокой производительностью и низким гидравлическим сопротивлением (15 м вод. ст.). Широко применяемая в практике водоподготовки мембранная микрофильтрация, обеспечивающая полное удержание микроорганизмов и порошкообразного сорбента (в частности, ПАУ), позволяет совместить разработанный специалистами НИИ ВОДГЕО биосорбционный метод в единый процесс с мембранным фильтрованием.

В биосорбционно-мембранной технологии совмещены процессы мембранного фильтрования и биосорбционного окисления с помощью биологически активного порошкообразного активированного угля. Его использование в мембранном биореакторе обеспечивает глубокое удаление как легкоокисляемых, так и трудноокисляемых органических загрязнений.

Биологические процессы с использованием порошкообразного угля протекают почти на порядок интенсивнее, чем с гранулированным утлем, по-видимому, за счет большей удельной поверхности порошкообразного носителя. Данная технология апробирована на природной воде рек Москвы и Яузы [6; 7].

Начиная с 2011 г. проводились исследования на природной воде р. Дон. Концентрации присутствующих в донской воде хлороформа, дихлорбромметана, дибромхлорметана и трибромметана составляют менее 1,5 мкг/л, т. е. не превышают норматив СанПиН 2.1.4.1074-01 и ГН 2.3.5.2280-07. Тем не менее, по результатам анализов на станции водоподготовки (за период 2008-2009 годов) после первичного хлорирования в воде присутствуют тригалогенметаны, суммарная концентрация которых в среднем достигает $45-50 \mathrm{mкт} /$ л. Вторичное хлорирование увеличивает их содержание свыше 60 мкт/л, что превышает нормативные требования.

При отсутствии хлор- и броморганических соединений в исходной воде целесообразно применять методы, предотвращающие их образование в процессе очистки воды. «Предшественниками» образования тригалогенметанов являются загрязнения как природного происхождения (цветность, мутность, ХПК и др.), так и специ-

Рис. 1. Корреляционная зависимость суммарного содержания тригалогенметанов в питьевой воде от ХПК природной воды р. Дон

фические вещества антропогенного характера (нефтепродукты, пестициды, фенолы и др.).

Химический состав воды в водоисточнике непосредственно влияет на качество питьевой воды. Суммарное содержание тригалогенметанов, образующихся в процессе водоподготовки, существенным образом (коэффициент корреляции $\mathrm{R}=0,6$) зависит от концентрации органических загрязнений, оцениваемых по ХПК (рис. 1).

Результаты исследований, проведенных на пилотной биосорбционно-мембранной установке (БМР) производительностью до 0,5 м $^{3} /$ сут на воде р. Дон, показали перспективность этой технологии для предотврашения образования хлори броморганических соединений в питьевой воде [8].

Биосорбционно-мембранная технология особенно эффективна для устранения токсичности и канцерогенной опасности воды поверхностных водоисточников, что особенно актуально в условиях сильного антропогенного загрязнения.

Экспериментально доказано, что использование БМР в начале технологической схемы позволяет получить качество очищенной воды, удовлетворяющее требованиям СанПиН по основным загрязняющим компонентам и загрязнениям антропогенного характера.

Предварительная биосорбционно-мембранная обработка речной воды обеспечивает уменьшение при последующем хлорировании образования токсичных тригалогенметанов в $1,4-$ 1,5 раза за счет удаления органических загрязнений (рис. 2). При времени обработки воды в биореакторе 1,1 час ХПК снижается на $56-67 \%$, цветность - на $77-79 \%$, перманганатная окисляемость - на 58-59\%.

Следующий этап исследований был посвящен доочистке очищенной воды после предваритель-

Рис. 2. Динамика изменения содержания хлор- и Рис. 2. динамика изменения содержания хлор- и
броморганических соединений после хлорирования воды
\square исходная вода; \square пермеат установки

ной физико-химической обработки с целью удаления хлор- и броморганических соединений, образуюшихся при первичном хлорировании.

Мутность исходной воды (из отстойников) за период испытаний (январь-август 2012 г.) изменялась от 0,6 до 6,8 мг/л, а в пермеате - от 0,06 до 0,36 мг/л. В среднем за весь период эксперимента мутность снижалась с 2 до 0,13 мг/л, эффективность очистки при этом составляла 91%.
Цветность воды в биореакторе в среднем снижалась с 8,9 до 5,78 град ПКШ (рис. 3), эффективность снижения цветности при этом составляла $34,3 \%$.

Для сравнения биосорбционно-мембранной технологии с существующим на данной водоочистной станции методом фильтрования были проведены анализы качества очищенной воды после БМР и фильтров. Усредненные сравни-

тельные показатели эффективности доочистки воды в БМР и традиционным способом (фильтрованием) представлены на рис. 4 .
Исследования показали, что при дополнительной обработке донской воды, прошедшей предварительную физико-химическую очистку, в БМР концентрация остаточных органических загрязнений, оцениваемых по перманганатной окисляемости, снижалась в среднем с 3,6 до $2,5 \mathrm{mг} / л$, эффективность доочистки составила 35%.
Показатель ХПК исходной воды (после отстойника) в среднем составлял $6,9 \mathrm{mг} / л$, а очищенной воды после БМР не превышал $5,2 \mathrm{mr} / л$, эффективность доочистки (удаления органических загрязнений) по ХПК составляла 33\%. При этом с увеличением концентрации органических загрязнений в исхолной воде до 15 мг/л по ХПК эффективность очистки достигала 67%.

В то же время на фильтрах эффективность удаления органических загрязнений по ХПК составляла 19%, по перманганатной окисляемости -9% и цветности -10%.

Наиболее высокая степень доочистки в обоих случаях была получена по мутности. Эффек тивность снижения мутности в БМР составляла 91%, на фильтрах -58%.

Таким образом, результаты сравнительных исследований по доочистке воды р. Дон после ее очистки по традиционной схеме с предварительным хлорированием показали, что доочистка воды в биосорбционно-мембранном реакторе позволяет сушественно уменьшить количество хлорорганических соединений, образовавшихся при первичном хлорировании. Эффективность

Рис. 3. Динамика снижения цветности в биосорбционно
мембранном реакторе
1 - исходная вода; 2 - пермеат; 3 - эффективность

Рис. 4. Эффективность доочистки воды \square биосорбционно-мембранный реактор; \square фильтр

Рис. 5. Эффективность снижения концентрации хлорорганических соединений при доочистке воды
\square биосорбционно-мембранный реактор; \square фильтр

снижения хлороформа в БМР составляла в среднем 45% (с 3,89 до 2,16 мкт/л), дихлорбромметана -82% (с 1,47 до 0,26 мкт/л) и хлордибромметана -89% (с 0,47 до $0,05 \mathrm{mKr} / л$), в то время как при фильтровании хлороформ удалялся на 23%, дихлорбромметан и хлордибромметан - на 33% каждый (рис. 5). Бромоформ в исходной воде в этот период наблюдения отсутствовал.

Выводы

Результаты исследований, проведенных на пилотной установке на воде р. Дон, показали, что развитие биосорбционно-мембранных технологий является перспективным направлением совершенствования процессов очистки природных вод, в частности, для предотвращения образования хлор- и броморганических соединений при хлорировании воды. Биосорбционно-мембранная технология эффективна для устранения токсичности и канцерогенной опасности воды источников питьевого водоснабжения, что особенно актуально в условиях сильного антропогенного загрязнения Предварительная био-сорбционно-мембранная обработка воды р. Дон

позволяет уменьшить образование токсичных хлор- и броморганических соединений при последующем хлорировании воды в $1,4-1,5$ раза. Доочистка воды в биосорбционно-мембранном реакторе уменьшает количество хлорорганических соединений, образовавшихся при первичном хлорировании. Эффективность снижения хлороформа в БМР составляла в среднем 45% (с 3,89 до $2,16 \mathrm{mKг} / л$), дихлорбромметана 82% (с 1,47 до 0,26 мкг/л) и хлордибромметана -89% (с 0,47 до 0,05 мкт/л), в то время как при фильтровании хлороформ удалялся на 23%, дихлорбромметан и хлордибромметан - на 33\% каждый.

СПИСОК ЛИТЕРАТУРЫ

1. Фомин Г. С. Вода. Контроль химической, бактериальной и радиационной безопасности по международным стандартам: Энциклопедический справочник. - М.: Протектор, 2010. 1008 с.
2. Кириченко В. Е., Первова М. Г., Пашкевич К. И. Галогенорганические соединения в питьевой воде и методы их определения // Российский химический журнал. 2002. T. XLVI. № 4. C. 18-27.
3. Алексеева Л. П. Снижение хлорорганических соединений, образующихся в процессе подготовки питьевой воды // Водоснабжение и санитарная техника. 2009. № 9. С. 27-34.
4. Шурэнцэцэг Х. Качество питьевой воды при различных способах водоподготовки. Дисс. ... канд. техн. наук. - Иваново, 2009. 16 с.
5. Руководство на технологию подготовки питьевой воды, обеспечивающую выполнение гигиенических требований в отношении хлорорганических соединений. - М., АКХ им. К. Д. Памфилова, 1989.16 c.
6. Швецов В. Н., МорозоваК. М., Пушников М. Ю., Смирнова И. И. Очистка природных вод биосорбционно-мембранным методом // Водоснабжение и санитарная техника. 2007. № 11. С. 24-28.
7. Швецов В. Н., МорозоваК. М., Смирнова И. И. Развитие биомембранных технологий очистки природных вод // Водоснабжение и санитарная техника. 2009. № 9. С. 64-70.
8. Швецов В. Н., Морозова К. М., Фесенко Л. Н., Скрябин А. Ю., Теремязев а О. В. Биосорбиионно-мембранная технология для предотврашения образования хлор- и броморганических соединений в воде р. Дон // Водоснабжение и санитарная техника. 2012. № 2. C. 7-13.
